Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Chemosphere ; 354: 141698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490608

RESUMO

The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.


Assuntos
Cosméticos , Detergentes , Animais , Biodegradação Ambiental , Ecossistema , Estágios do Ciclo de Vida
2.
Fish Shellfish Immunol ; 147: 109459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369068

RESUMO

Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.


Assuntos
Penaeidae , Probióticos , Animais , Crustáceos , Aquicultura/métodos , Alimentos Marinhos , Qualidade da Água
3.
Chemosphere ; 352: 141421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360415

RESUMO

Herbicides and insecticides are pervasively applied in agricultural sector to increase the yield by controlling or eliminating bug vermin and weeds. Although, resistance development occurs, direct and indirect impact on human health and ecosystem is clearly visible. Normally, herbicides and pesticides are water soluble in nature; accordingly, it is hard to decrease their deadliness and to dis-appear them from the environment. They are profoundly specific, and considered as poisonous to various peoples in agricultural and industrial work places. In order to substantially reduce the harmful impacts, it is crucial to thoroughly examine the detection and mitigation measures for these compounds. The primary objective of this paper is to provide an overview of various herbicide and pesticide detection techniques and associated remedial techniques. A short summary on occurrence and harmful effects of herbicides/insecticides on ecosystem has been included to the study. The conventional and advanced, rapid techniques for the detection of insecticides and herbicides were described in detail. A detailed overview on several mitigation strategies including advanced oxidation, adsorption, electrochemical process, and bioremediation as well as the mechanism behind the strategic approaches to reduce the effects of growing pesticide pollution has been emphasized. Regardless of the detection techniques and mitigation strategies, the recent advances employed, obstacles, and perspectives have been discussed in detail.


Assuntos
Herbicidas , Inseticidas , Praguicidas , Humanos , Inseticidas/análise , Herbicidas/análise , Ecossistema , Praguicidas/análise , Monitoramento Ambiental
4.
Heliyon ; 10(4): e25973, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390106

RESUMO

A sustainable method to reduce the use of natural resources and the negative effects of the concrete industry on the environment is to use waste lateritic aggregate in self-compacting concrete and evaluate its fresh, mechanical and durability characteristics. Using RSM's central composite design (CCD), Thirteen different SCC mixtures have been designed with varying input factor combinations (LA: 0-100%, PPF: 0-2%) and tested for eight responses (rheological properties, like slump flow, V-funnel time, and T500; mechanical properties, like compressive, split-tensile, and flexural strengths, and durability properties like drying shrinkage and rapid chloride penetration test). The analysis of variance (ANOVA) test was performed to determine the accuracy of the mathematical models developed following the experimental results. ANOVA was used to verify eight response models (seven quadratic and one linear). The inclusion of laterite aggregate has been found to linearly reduce the workability of fresh concrete. Self-compacting concrete will have a lower V-funnel value if any combination of components falls below these two limit values (31% LA and 1.12% PPF). The area bounded by the 760-mm contour line and the graph axes recorded the highest slump flow at (28% LA and 1.26% PPF). Similarly, SCC with a lower T500 value will be produced by any combination of components below these two limit values (25% LA and 1.11% PPF). By replacing 28.5% of the granite aggregate with laterite aggregate and adding 1.24% polypropylene fiber, the compressive strength of M30 grade self-compacting concrete increased by 12.33% after 28 days. A similar strength gain of 7.89% was seen in the splitting tensile by replacing 28% of the granite aggregate with laterite aggregate and adding 1.46% polypropylene fiber over the control mix, and a flexural strength gain of 14.46% was seen by replacing 31.4% of laterite aggregate and adding 1.2% polypropylene fiber, respectively. The low drying shrinkage values are related to a combination of LA concentration (34.4% replacement) and PPF (1.31%) and minimum chloride ingress is located in the region with a LA concentration (30.5% replacement) and a PPF content (1.26%), The projected optimal data were verified experimentally with an error rate of less than 5%. Thus, it is highly recommended that the created model be adequate and capable of optimizing both the experimental and analytical values. It is recommended that the utilization of 25% LA and 1% PPF in lateritic self-compacting concrete provides optimum outcomes for the construction industry in the field of civil engineering.

5.
Food Chem Toxicol ; 185: 114491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325634

RESUMO

Many methods have been proposed for the remediation of dye-contaminated soils, a widespread form of environment pollution. Bioremediation, it is hoped, can combine ecological benefits with efficiency of dye decontamination. We review the types and sources of dye contaminants; their possible effects on plant, animal, and human health; and emerging strategies for microbial bioremediation. Challenges, limitations, recommendations for future research, and prospects for large-scale commercialization of microbial bioremediation are discussed.


Assuntos
Poluentes do Solo , Animais , Humanos , Biodegradação Ambiental , Poluentes do Solo/análise , Plantas , Corantes , Solo
6.
Chemosphere ; 350: 141123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185426

RESUMO

Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Resíduos Perigosos
7.
Food Res Int ; 173(Pt 2): 113366, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803705

RESUMO

The food packaging industries are facing the challenge of food waste generation. This can be addressed through the use of edible coating materials. These coatings aid in extending the shelf life of food products, reducing waste. The key components of these coatings include food-grade binding agents, solvents, and fillers. The integration of polysaccharide, protein, lipids, bioactive and composite-based materials with edible coating matrix aids to combat substantial post-harvest loss of highly perishable commodities and elevates the quality of minimally processed food. The aim of this review is to introduce the concept of edible coatings and discuss the different coating materials used in the food industry, along with their properties. Additionally, this review aims to classify the coating types based on characteristic features and explore their application in various food processing industries. This review provides a comprehensive overview of edible coatings, including the integration of polysaccharides, proteins, lipids, bioactive, and composite-based materials into the coating matrix. This review also addresses the significant post-harvest loss of highly perishable commodities and emphasizes the enhancement of quality in minimally processed food. Furthermore, the antimicrobial, anti-corrosive, and edible characteristics are highlighted, showcasing their potential applications in different food packaging industries. Moreover, it also discusses the challenges, safety and regulatory aspects, current trends, and future perspectives, aiming to shed light on the commercialization and future investigation of edible coatings.


Assuntos
Filmes Comestíveis , Eliminação de Resíduos , Embalagem de Alimentos , Conservação de Alimentos , Polissacarídeos/química , Frutas , Proteínas/química , Lipídeos
8.
Environ Pollut ; 339: 122720, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839681

RESUMO

Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental
9.
Environ Res ; 236(Pt 1): 116723, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487925

RESUMO

The environment worldwide has been contaminated by toxic pollutants and chemicals through anthropogenic activities, industrial growth, and urbanization. Microbial remediation is seen to be superior compared to conventional remediation due to its low cost, selectivity towards particular metal ions, and high efficiency. One key strategy in enhancing microbial remediation is employing an immobilization technique with biochar as a carrier. This review provides a comprehensive summary of sources and toxic health effects of hazardous water pollutants on human health and the environment. Biochar enhances the growth and proliferation of contaminant-degrading microbes. The combined activity of biochar and microbes in eliminating the contaminants has gained the researcher's interest. Biochar demonstrates its biocompatibility by fostering microbial populations, the release of enzymes, and protecting the microbes from the acute toxicity of surrounding contaminants. The current review complies with the immobilization technique and remediation mechanisms of microbes in pollutant removal. This review also emphasizes the combined utilization, environmental adaptability, and the potential of the combined effect of immobilized microbes and biochar in the remediation of contaminants. Challenges and future outlooks are urged to commercialize the immobilized microbes-biochar interaction mechanism for environmental remediation.

10.
Environ Pollut ; 327: 121572, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028793

RESUMO

Heavy metals, dyes and pharmaceutical pollutants in water environment are considered as serious threat to the human and animal health globally. Rapid development of industrialization and agricultural activities are the major source for eliminating the toxic pollutants into the aquatic environment. Several conventional treatment methods have been suggested for the removal of emerging contaminants from wastewater. Algal biosorption, among other strategies and techniques, is demonstrating to be a limited technical remedy that is more focused and inherently more efficient and helps remove dangerous contaminants from water sources. The different environmental effects of harmful contaminants, including heavy metals, dyes, and pharmaceutical chemicals, as well as their sources, were briefly compiled in the current review. This paper provides a comprehensive definition of the future possibilities in heavy compound decomposition by using algal technology, from aggregation to numerous biosorption procedures. Functionalized materials produced from algal sources were clearly proposed. This review further highlights the limiting factors of algal biosorption to eliminate the hazardous material. Finally, this study showed how the existence of algae indicates a potential, effective, affordable, and sustainable sorbent biomaterial for minimizing environmental pollution.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Águas Residuárias , Purificação da Água/métodos , Plantas , Preparações Farmacêuticas
11.
Chemosphere ; 331: 138680, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37119925

RESUMO

The worldwide trend in energy production is moving toward circular economy systems and sustainable availability of sources. Some advanced methods support the economic development of energy production by the utilization of waste biomass, while limiting ecological effects. The use of agro waste biomass is viewed as a major alternative energy source that expressively lowers greenhouse gas emissions. Agricultural residues produced as wastes after each step of agricultural production are used as sustainable biomass assets for bioenergy production. Nevertheless, agro waste biomass needs to go through a few cyclic changes, among which biomass pre-treatment contributes to the removal of lignin and has a significant role in the efficiency and yield of bioenergy production. As a result of rapid innovation in the utilization of agro waste for biomass-derived bioenergy, a comprehensive overview of the thrilling highlights and necessary advancements, in addition to a detailed analysis of feedstock, characterization, bioconversion, and contemporary pre-treatment procedures, appear to be vital. To this end, the current status in the generation of bioenergy from agro biomass through various pre-treatment procedures was examined in this study, along with presenting relevant challenges and a perspective for future investigations.


Assuntos
Agricultura , Fontes Geradoras de Energia , Biomassa , Lignina , Desenvolvimento Econômico , Biocombustíveis
12.
Chemosphere ; 329: 138670, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37054843

RESUMO

Decarbonization has become a critical issue in recent years due to rising energy demands and diminishing oil resources. Decarbonization systems based on biotechnology have proven to be a cost-effective and environmentally benign technique of lowering carbon emissions. Bioenergy generation is an environmentally friendly technique for mitigating climate change in the energy industry, and it is predicted to play an important role in lowering global carbon emissions. This review essentially provides a new perspective on the unique biotechnological approaches and strategies based decarbonization pathways. Furthermore, the application of genetically engineered microbes in CO2 biomitigation and energy generation is particularly emphasized. The production of biohydrogen and biomethane via anaerobic digestion techniques has been highlighted in the perspective. In this review, role of microorganisms in bioconversion of CO2 into different types of bioproducts such as biochemical, biopolymers, biosolvents and biosurfactant was summarized. The current analysis, which includes an in-depth discussion of a biotechnology-based roadmap for the bioeconomy, provides a clear picture of sustainability, forthcoming challenges, and perspectives.


Assuntos
Biocombustíveis , Dióxido de Carbono , Dióxido de Carbono/análise , Biotecnologia/métodos
13.
Environ Res ; 221: 115306, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682444

RESUMO

Disposal of biodegradable waste of seashells leads to an environmental imbalance. A tremendous amount of wastes produced from flourishing shell fish industries while preparing crustaceans for human consumption can be directed towards proper utilization. The review of the present study focuses on these polysaccharides from crustaceans and a few important industrial applications. This review aimed to emphasize the current research on structural analyses and extraction of polysaccharides. The article summarises the properties of chitin, chitosan, and chitooligosaccharides and their derivatives that make them non-toxic, biodegradable, and biocompatible. Different extraction methods of chitin, chitosan, and chitooligosaccharides have been discussed in detail. Additionally, this information outlines possible uses for derivatives of chitin, chitosan, and chitooligosaccharides in the environmental, pharmaceutical, agricultural, and food industries. Additionally, it is essential to the textile, cosmetic, and enzyme-immobilization industries. This review focuses on new, insightful suggestions for raising the value of crustacean shell waste by repurposing a highly valuable material.


Assuntos
Quitosana , Animais , Humanos , Quitosana/química , Quitina/química , Alimentos Marinhos , Agricultura
14.
Environ Res ; 220: 115252, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632883

RESUMO

Remediation of environmental oil pollution with the usage of fungal organisms has proven to be a successful cleanup bioremediation method for organic contaminants. To investigate the breakdown of oil pollutants in water environments, biosurfactant-producing fungi have been isolated from oil-polluted soil samples. 16s rRNA sequencing technique was performed to identify the fungal organism and phylogenetic tree has been constructed. A variety of biosurfactant screening tests have demonstrated the better biosurfactant producing ability of fungi. The emulsion's stability, which is essential for the biodegradation process, was indicated by the emulsification index of 68.48% and emulsification activity of 1.3. In the isolated biosurfactant, important functional groups such as amino groups, lipids, and sugars were found according to thin layer chromatography analysis with a maximum retention value of 0.85. A maximum oil degradation of around 64% was observed with immobilized beads within 12 days. The half-life, and degradation removal rate constant of 20.21 days and 0.03 day-1, respectively, have been determined by the degradation kinetic analysis. GCMS analysis confirmed the highly degraded hydrocarbons such as nonanoic acid and pyrrolidine. The immobilized fungi exhibit better oil biodegradability in aqueous solutions.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Biomassa , Cinética , Filogenia , RNA Ribossômico 16S , Hidrocarbonetos , Água , Fungos/genética , Petróleo/análise , Petróleo/metabolismo , Tensoativos/análise , Poluentes do Solo/análise
15.
Chemosphere ; 318: 137947, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706809

RESUMO

In this current research, a novel way of utilizing the plant weed and dairy industrial waste for the cost-effective production of Lovastatin by the novel fungus Fusarium nectrioides (MH173849) under controlled conditions was reported for the first time with scientific evidence. A total of 25 endophytic fungi were isolated from the 90 tissue fragments of Euphorbia hirta (L) and identified based on morphological and microscopical characteristics. All the fungal isolates were screened for Lovastatin production using Neurospora crassa bioassay. Among the 25 fungal isolates, Fusarium sp2, Nigrospora sphaerica, and Fusarium sp 4 showed maximum zone of inhibition and they were further verified by Thin Layer Chromatography. Since the Rf values of Fusarium sp 4 and standard Lovastatin were the same, further characterization was preceded only with Fusarium sp 4. An evolutionary relationship of two positive isolates, Fusarium sp 2 and Fusarium sp 4 was studied with other Lovastatin-producing fungi. Gene sequencing and BLAST revealed that a novel fungus, Fusarium sp 4 was found to be Fusarium nectrioides (MH173849) and it was further used for batch fermentation of Lovastatin in the modified media using liquid cheese whey under controlled conditions, which enhanced the productivity up to 43.40 µg/mL with the minimum purification steps. LC-MS-MS and NMR studies confirmed the production of Lovastatin by F. nectrioides (MH173849) due to the presence of Pyran molecule hydrogen, Hydrogen fusing two molecules as intermediate with triplet signal groups, methylbutanoic acid, and hexahydro naphthalene. Therefore, this fungus may be utilized by industries for the cost-effective production of Lovastatin.


Assuntos
Queijo , Fusarium , Fusarium/química , Soro do Leite , Resíduos Industriais , Lovastatina , Fermentação
16.
Chemosphere ; 314: 137713, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596329

RESUMO

Biofortification is a revolutionary technique for improving plant nutrition and alleviating human micronutrient deficiency. Fertilizers can help increase crop yield and growth, but applying too much fertilizer can be a problem because it leads to the release of greenhouse gases and eutrophication. One of the major global hazards that affects more than two million people globally is the decreased availability of micronutrients in food crops, which results in micronutrient deficiencies or "hidden hunger" in people. Micronutrients, like macronutrients, perform a variety of roles in plant and human nutrition. This review has highlighted the importance of micronutrients as well as their advantages. The uneven distribution of micronutrients in geological areas is not the only factor responsible for micronutrient deficiencies, other parameters including soil moisture, temperature, texture of the soil, and soil pH significantly affects the micronutrient concentration and their availability in the soil. To overcome this, different biofortification approaches are assessed in the review in which microbes mediated, Agronomic approaches, Plant breeding, and transgenic approaches are discussed. Hidden hunger can result in risky health conditions and diseases such as cancer, cardiovascular disease, osteoporosis, neurological disorders, and many more. Microbes-mediated biofortification is a novel and promising solution for the bioavailability of nutrients to plants in order to address these problems. Biofortification is cost effective, feasible, and environmentally sustainable. Bio-fortified crops boost our immunity, which helps us to combat these deadly viruses. The studies we discussed in this review have demonstrated that they can aid in the alleviation of hidden hunger.


Assuntos
Biofortificação , Saúde Global , Humanos , Biofortificação/métodos , Melhoramento Vegetal , Micronutrientes , Solo , Produtos Agrícolas
17.
Chemosphere ; 310: 136856, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243094

RESUMO

Food waste have become a growing concern worldwide with raising population and economic growth. Wastewater discharged from food industries contains many valuable and toxic components that have a negative impact on the ecological system. Large amounts of wastewater are discharged from the food industry, which necessitates the creation of effective technologies. Wastewater from the food industry can be seen as a rich source of energy and a primary source for generating valuable products. Waste disposal and resource recovery are sustainably valued by anaerobic digestion of wastewater from the food sector. The characteristics, composition, and nature of wastewater produced from various food sectors are elaborated upon in this review. An overview of the anaerobic digestion process for wastewater treatment in the food industry is included. Enhancement strategies for the anaerobic digestion process have been discussed in detail. In addition, various types of reactors utilized for performing anaerobic digestion is illustrated. Though anaerobic digestion process possesses advantages, the challenges and future scope are examined for improving the outcome.


Assuntos
Eliminação de Resíduos , Águas Residuárias , Anaerobiose , Eliminação de Resíduos Líquidos , Alimentos , Reatores Biológicos , Indústria Alimentícia , Metano/análise , Esgotos
18.
Chemosphere ; 313: 137323, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410512

RESUMO

Heavy metals are hazardous and bring about critical exposure risks to humans and animals, even at low concentrations. An assortment of approaches has been attempted to remove the water contaminants and keep up with water quality, for that microbial bioremediation is a promising way to mitigate these pollutants from the contaminated water. The flexibility of microorganisms to eliminate a toxic pollutant creates bioremediation an innovation that can be applied in various water and soil conditions. This review insight into the sources, occurrence of toxic heavy metals, and their hazardous human exposure risk. In this review, significant attention to microbial bioremediation for pollutant mitigation from various ecological lattices has been addressed. Mechanism of microbial bioremediation in the aspect of factors affecting, the role of microbes and interaction between the microbes and pollutants are the focal topics of this review. In addition, emerging strategies and technologies developed in the field of genetically engineered micro-organism and micro-organism-aided nanotechnology has shown up as powerful bioremediation tool with critical possibilities to eliminate water pollutants.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Poluentes da Água , Animais , Humanos , Poluentes Ambientais/toxicidade , Biodegradação Ambiental , Águas Residuárias , Metais Pesados/toxicidade
19.
ISA Trans ; 136: 374-389, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36535836

RESUMO

This paper proposed an improved jellyfish Search (ImpJS) technique for torque ripple minimization on CUK converter based BLDC motor. In this paper, crossover and mutation operator are utilized to improve searching behavior of the JS algorithm. Hence, it is named as improved jellyfish algorithm (ImpJS). At first, BLDC motor is considered along with the Cuk converter is improved through the switched inductor. Simultaneously, the execution of the BLDC motor operation includes speed and torque control strategy is also analyzed. In order to improve these two strategies, the proposed ImpJS system is introduced. The best gain parameter is tuned to upgrade the controller operation considering the objective function. Finally, the proposed technique-based BLDC motor is performed on MATLAB/Simulink platform in order to analyze the performance is compared with other existing system to determine the effectiveness. The existing techniques like particle swarm optimization (PSO), ant lion optimizer (ALO) and salp swarm algorithm (SSA). In case 1 and case 2, the MSE for proposed technique achieves the value of 0.01093 and 0.01095. In case 1 and case 2, the voltage deviation for the proposed system achieves the value of 2 and 2.

20.
Bioresour Technol ; 366: 128187, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309177

RESUMO

The production of chemicals and energy from sustainable biomass with an important objective decreasing carbon impressions has recently become one of the key areas of attention. Algae biomass have been recognized and researched as a potential renewable biomass of biohydrogen production attributed to their limited multiplying time, fast growing qualities and ability of lipid accumulation. This review additionally envelops various key perspectives such as composition and properties of algae biomass and pretreatment strategies such as physical, chemical and biological methods adopted for the algae biomass. This review is mainly focused on pretreatment strategies which have been developed to enhance biohydrogen production. The present review deals with methods and mechanism, enzymes involved and factors influencing on biohydrogen production which help to grasp various bottlenecks, challenges and constraints. Finally, the significant progressions and economical perspective on improving biohydrogen yield because of the expansion of co-substrates and the current trends are examined.


Assuntos
Biocombustíveis , Hidrogênio , Biomassa , Hidrogênio/análise , Fermentação , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...